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POLARIZATION ADJACENT TO AN INHOMOGENEOUS MEMBRANE

J. L. Gaddis and S. Datta

Department of Mechanical Engineering
Clemson University

Clemson, SC 29634-0921

ABSTRACT

The diffusion field over the surface of a membrane has been analyzed
in a simplified manner responsive 1o the microporous nature of the
actual membrane. The membrane surface is modeled as having
intermittent strips of active sites (ribbons) separated by inactive

sites (islands). The two-dimensional representation of the
concentration field omits the third (transverse) direction of diffusion
and assumes a regular and systematic surface arrangement. The
equations of flow and concentration are shown to be reducible to a set
of linear equations, solvable by standard methaods of finite

differencing and algebraic solution.

The results show systematic variations of a significant magnitude
locally around the ribbons (pores) of membrane. The magnitude, for
example, assumes a concentration value 1.15 times the local
concentration to occur from the upstream to the downstream side of a
given ribbon for 33% surface porosity. Smaller ribbons are expected
to produce larger jumps. The effect of the discontinuous membrane is
isolated. That is, the rapid increases and decreases in concentration
are in proportion to the local concentration value.
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INTRODUCTION

Membranes are modern devices used to accomplish separation
of solutes from solvents. The solute retained by an operating
membrane becomes concentrated near the surface of the membrane
and diffuses back into the stream. The solute concentration and
diffusion process is frequently referred to as solute polarization.

The polarization process has heretofore been modeled as a uniform
process near an idealized membrane surface. But, on the scale of
thickness of the polarization fayer of about a few micrometers, the
membrane is anything but homogeneous. Cast polymeric membranes
have active flux sites of about 0.5 um separated by several um;
formed-in-place membranes formed on steel supports have a sea of
membrane punctuated by 10um impermeable islands; and ceramic
membranes commonly have pores of 0.1um spaced at 0.3um intervals.
So it is clear that the transverse flow of solvent through the

membrane is non-homogeneous on a microscopic (but not on a
molecular) scale. This effort aspires to study a model responsive to
the degree of non-uniformity expected and predict the behavior as it
depends on the surface.

Polymeric membranes (1,2) are sometimes microporous, as in
the case of the usual ultrafilters, and sometimes asymmetric,
having small regions of very thin material near which the solvent
flow will be locally higher. The effect of the asymmetric structure
will be regarded as the same as a pore in that it produces a small
region of high solvent flow, surrounded by a region of low or zero
flow. Ceramic membranes (3) tend to exhibit much greater porosity
than the polymeric membranes. In these cases of much higher pore
densities the pores are obviously much closer together probably
leading to a nearer approach to the homogeneous surface. The
formed-in-place (also known as dynamic) membrane (4) is formed on
a porous metal tube resulting in a deposited gel layer or polymer
layer which forms a "sea” of membrane interspersed with
impermeable "islands" of stainless steel. Thus the membrane
surface is not directly comparable with those surfaces having a
structure of pores in impermeable material.

In any of the surfaces mentioned, an observer riding on a
streamline would view, looking directly at the membrane surface
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with a narrow field of view, the three-dimensional membrane

surface as intermittent patches of active membrane and inactive
surface with the active pores having sizes from as small asinm to

as large as 10um. The patches of membrane would be separated by
distances of less than one pore dimension te distances of about 100
pore dimensions. If the pores are regularly arranged and diffusion
transverse to the motion of the observer is not considered, the

result should be well represented by a two-dimensional solution
wherein the pores are slots or ribbons. This easier two-dimensional
problem is addressed.

ING AND A YSI

Desiring to determine the effect of the inhomogeneous nature
of the membrane on the details of the membrane process, the
following model has been constructed. The membrane surface is the
boundary of a channel idealized as having a fully developed and
uniform velocity field, having a very slight amount of flow
withdrawn as permeate and having little pressure drop compared
with the pressure. Under such assumptions the flux of permeate and
the shear stress at the membrane surface can be considered
constant. The fluid is allowed to permeate the surface in a regular
arrangement of strips or ribbons of membrane separated by islands
of impermeable material. The membrane ribbons are selectively
permeable allowing almost complete retention of solute, which in
turn returns to the fluid by diffusion. In this model the ribbons of
membrane are aligned on the surface so as to be perpendicular to the
crossflow direction allowing for the diffusion parallel to the ribbon
to be neglected. Such problems are characterized by large Schmidt
numbers and very thin layers of concentration polarization.

However, the common assumption to neglect diffusion in the stream
flow direction due to the thinness of the concentration layer must

be re-examined due to the smallness of the pore spacing in the
stream direction. For most cases it continues to be negligible, as
will be shown.

The domain for solution is the thin region totally
encompassing the zone in which concentration polarization occurs,
but much less than the entire channel. Boundary conditions are
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asymptotic at infinity, meaning the functions approach asymptotic
conditions and their derivatives vanish. The thickness of the
diffusive zone and the layer containing the focusing the membrane
flow are independently scaled. Coordinates adopted have the
x-direction parallel to the surface and aligned with the primary
fluid velocity, u. The y-coordinate is normal to the membrane
surface; this is parallel to the filter flow velocity, v. The
z-coordinate is mutually perpendicular to the others. The problem
is formulated to avoid involvement of this third direction in the
interest of simplicity and with the hope that essential information

is not lost.
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Figure 1 Schematic Diagram of the Solution Block
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Since the membrane is regularly arranged there are building
blocks which will be referred to as modules. One module is the
smallest representative element of the whole and comprises the
width of one ribbon-island pair and which extends far enough from
the membrane that the streamlines are straight and parallel. There
is no motive for flow in the direction (z) of the edge of the ribbon
strip, and the (x,y) cross section of one-half of one module is
sketched in the magnified view of Figure 1. The other half is the
mirror image of the half shown.

In the diagram the surface A represents the surface ot an
island and surface B is the ribbon of membrane. Surface D is
adjoining another such block at left, while surface E represents the
condition far enough from the membrane that the flow, (v), is
essentially straight and parallel. The flow problem, as indicated, is
symmetric about the line extending from the center of the ribbon
element. The main crossflow is from left to right (x-direction) and
the membrane flow (negative y-direction) is from top to bottom.
The v-velocity far from the membrane surface has the value -J, the
same as volume flow per unit of projected surface.

With the shear field fully developed, and because the scale of
the problem is small (maximum dimension of A+B=W/2 about
0.05mm) and the velocities are low (v of order 10°5 m/s) the flow
is dominated by viscous torces and all convective terms in the
equation of motion are negligible. This observation leads to
equations of motion:

du , av
LRl A
ax+ay
P v Py
0= -a—+u( az +_2)
ay
2 2
0= _a_P+p(a_v+.a_‘L N
dy w3yt

The first is the equation of continuity and the second pair represent
the equations for momentum in the directions of the cross flow and
perpendicular to the membrane surface, respectively. The boundary

1425
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conditions are:
u=0onAandB
v=00nA
v=-J'W/RonB
u=tpyonDandE
=-JonE
vonD* =von D™ (symmetry)

The problem thusly posed is observed to be linear and is
facilitated by using a superposition: u,v= u4,vy + up,vo. The first

component is a pure shear flow and the second is the converging
flow where the uniform volume flow is funneled into the individual
pores of the surface. Each component problem will satisfy the set
of differential equations and the boundary conditions for each
become:

uq = vy in the entire region
vi=0

up = 0 on the entire boundary
vo = symmetric with respect to centerline and D

vo=00nA
vo =-J*W/R on B
vo=-JonE

The solution to the second problem is facilitated by introduction of
a stream function ,y, such that

Ug=ady/dy and vp = -0y/ox.

With the introduction of vorticity, @ = dv/dx - du/ay, it is well

known (5) that the equation of continuity will be solved exactly, and
that two equations not having pressure explicitly will govern the
flow. These are

+ — =0 and
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The boundary conditions on these equations follow from physical
reasoning based on the velocity relations presented already and are:
o =0 onthe boundary except on A. At point C the vorticity,
o, is singular, positive on the corner shown and
negative on its image.
y=0onDand A
y =J*(W/2-x)on E
v = J*"W/R*(R-x) on B
v = W*J on the line of symmetry over the ribbon.

These equations were programmed for numerical solution. A
grid was selected as 6 mesh spaces in the x-direction and 20 to 300
divisions of essentially the same size in the y-direction. The
vorticity equation has been solved by alternating direction implicit
(ADI) method and the stream function equation by succcessive
over-relaxation method (SOR). The singular condition is represented
by a value of o at point C. The value used was adjusted to afford
consistency with the value of J. Intuitively there is one and only one
value of J for a given value of the strength of the circulation at
point C. The proper value gives zero dv/dy at the center of the
outlet of the pore (midpoint of A). The physical angle of convergence
of the streamlines is affected mildly by the selection, with more

15 g ' g o g 4
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Figure 2 Streamlines of the Solution
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convergence for lower magnitudes of the value of w at C. If too large
a values of vorticity at point C is selected, the centerline velocity
(v-direction) overshoots, then returns to the value of JW/R. At the
same time a recirculation region appears in the corner; such a
pattern is not expected and not valid for a flow without inertial

terms included. Solutions with great depth in the y-direction prove

to be identical with those of less depth; the effective region in

which the streamlines converge is about the same as the width of
the region. Figure 2 shows the pattern of streamlines calculated.
There are no unanticipated features of the flow.

It is assumed that the diffusion is in two directions only; it
will be further assumed that the diffusion coefficient and density
are constant. Under these assumptions the equation governing the
concentration of solute is:

2 2
u@—+va—c= D(a—c+a—c). (1)

ox ay ax2 ayz

This equation is subject to boundary conditions as follows:

c(0.y)= cg (2a)
C(X,0)= Cg (2b)
dc/dy= (v/D)c at y=0 (2¢)

Also some condition may be required at x=L. The condition
represented by (2c) is total exclusion of solute by the membrane.
The start of the field (x=0) is located in the middle of the first
island.

According to previous analysis the velocities are given by the
sum of two solutions:

u, =%y and v, =0.
m

and

up, =J U(x',y") and v, = J V(x'y'). Here x'=x/W-n and y'=y/W
and the normalized solutions U and V depend on the coordinates
(x',y') and on the parameter R/W representing the area of the
membrane per surface area. The value of n is the number of flow
modules upstream of the current one.
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The magnitude of u; compares to u, as T/l to JW/R2. In most cases
u4 is several orders of magnitude greater so that u, is insignificant.
Therefore u=uq=t/p and v=vp; viJ = V(x',y'). These terms are
installed into the diffusion equation (1).

Substitute into Equations (1 and 2) the variable changes:
C=c/cB, Y=Jy/D, X=xpJ3/1D2. There results:

2 24 .2

y9C +lﬁ=§.ﬁ+ﬂ_‘}?%_ 3)
X AN ¥ 2D x

C(0,Y)=0 (4a)

C(x,0)=0 (4b)

9C/@Y=- (W/R)C at Y=0 (4c)

The importance of the longitudinal diffusion term in Equation (3)
depends on the value of the parameter u2J4/12D2. Values of T/y, the
shear rate, will typically be from 100 to 100,000 sec1, while J

may range from 0.05 to 1x10"4 m/s, and D may be from 101110
1.5x10"% m%/s. Nominal values of T/H =103, J=10-5, and D=10-10
yield uJ2/1D=1 0-3, a small value. Whenever this parameter is very
small, the last term in the equation is of negligible importance,

since the value of the longitudinal derivative will at most be
approximately the same as that for the transverse derivative. Lower
values of D may usually be identified with lower values of J, and
higher values of shear are used to avert low values of J, hence not
with large J-values. It appears that most of the time the

longitudinal diffusion term may be safely neglected.

Based on observations of computations (6) for the
homogeneous membrane, the thickness of the diffusive zone is
approximately 2D/J. The corresponding thickness of the flow
solution in the y-direction (ie the zone in which the convergence of
the streamlines is consummated) is shown in Figure 2 to be
approximately W. The ratios of the thicknesses of the flow and
diffusion zones is WJ/2D. Whenever the parameter is significantly
greater than unity the diffusive zone is declared to be thin, and the
velocity, v, forms strips having values alternating between zero and
JW/R over the islands and ribbons, respectively. If the value of
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WJ/2D is unity or smaller, the diffusive zone is declared to be thick.
For the calculations herein the value of WJ/2D is 1/4. A complete
book of solutions would have computations for several values of
WJ/2D.

The ramifications of the size of JW/2D concern the magnitude
of the effort to obtain a solution. In the simplest (thin case) type of
calculations, the velocity v is constant over a pore and the velocity
field is not dependent upon the concentration field. A single
velocity solution applies to every ribbon module and there are
needed about 1 to 10-million steps each requiring the calculation of
300 concentration points. In the most complicated case osmotic
resistance or gel retardation is important and the velocity and
concentration fields will depend mutually upon each other and the
solutions will be extremely tedious. There will be 10,000 to
100,000 blocks of 100x300 concentration points interacting
iteratively with the flow solution. The former calculation has
proven to be challenging to the endurance or budget of a modest
computer (non supercomputer). The latter represents at teast an
order of magnitude more expense.

To effect a solution, finite difference techniques have been
used to form sets of algebraic equations from the differential
equation. Since the longitudinal diffusion term has been eliminated
from consideration, the procedure is of marching -solution type. The
concentration equation (3) has been broken into finite difference
forms using central differences in the Y-direction and
forward-difference formulation in the X-direction. The
maximum-guaranteed-stable step size is AX= (AY)3/2 for this
procedure. Normally such an equation would be solved using
implicit techniques, since the step size in the X-direction can be
much larger than with explicit techniques. However, for this
problem the steps must be small to account for the physical
arrangement. In many cases the step size and maximum step size
for stabilty of the explicit method are quite close. The explicit
technique has been selected as the calculations may be made rapidly.
Attempts to speed the solution are resisted because there are many
steps. A typical physical prablem has a flow module 10-5min
length, and the module is divided into perhaps 100 segments. If one
calculates the conditions along one meter of membrane, the result
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requires 10 million steps. Enough grids in the y-direction have been
selected (typically 300) to ensure the edge of the diffusion zone
does not exceed the range.

Results of calculations are in the form of

« Distribution of wall concentration C(x,0)=C,,
« The integral C:

L
Cc =j v(x,0) C{x,0) dx
0

« Concentration profiles C(y) at selected places, particularly at the
ends of ribbons and islands
* The mass excess integral B:

B J ulxy) {clxy) -y} dy
0
The control volume stretching from the start of the membrane to x=L
and extending to the value of y where the diffusion ceases is
sketched in Figure 3. The flow of solvent entering the front face at
x=0 is the same as that leaving the rear at x=L.

‘}Y I, Limit of concentration
1, \ /effect
h
N ‘/| N

- N\

4

h L
I =oj u(0.y)e 0y ; I2 -onchx; I, -5|"u(x,y) c(x.y)dy ;

|4- j. v(x,0) ¢(x,0) s dx ; s=passage
[+}
For passage=0, |4'='° , and u{0,y)=u(x,y), giving

|2--JcBL-|3 - |1 =B =Ju(x,y){c(x,y)- cB}dy .
Figure 3 Control Volume lllustrating the Solute Mass Flow
Integrals
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The solvent entering the top is the same as that leaving into the
permeate, its amount is [Jdx=JL. The difference in solute exiting
the rear, Jucdy, and the front, Iuchy, is the mass excess integral B

and it must equal Jcgl.. Two membranes are alike except in

microdetail if they have the same transport variables and the same
Jegl. They must have the same B-values consequently. However,

this does not mean they have the same C-values, since the
concentration profiles may be quite different. Yet the integrals
represented by C are proportional to the amount of material passed
to the permeate; the ratio of C of two membranes having equal
B-values and other properties is a primary result.

A few observations are in order concerning technical details
of the numerical work and the apparent accuracy. Herein accuracy is
judged partly by the calculated disparity between the integrals B
and Jegl. The disparity between the values is typically reduced to

under 15% only with considerable attention. The same measure of
accuracy as for homogeneous membrane calculations, about 2 to 3%,
was not possible to obtain. Errors appear significantly only at
positions several hundred modules downstream, making the effort

for computational experiments relatively large. The study of error
centered an the simulation of the membrane boundary condition, the
mesh size, and the interpretation of velocity field at the points of
discontinuity.

Various techniques have been used for the calculation of the
concentration at the membrane surface,ie the wall boundary
condition. The best boundary condition approach found assumes
constant v-velocity to integrate the boundary condition (4c) from O
to AY resulting in:

C(X,0) = C(X,AY) exp[(W/R)AY]

In all the formulations the ratio of the membrane surface
concentration to the concentration of the adjacent transverse node
is dependent on the parameters but not on the upstream
concentration value. Use of the exponential form resulted uniformly
in superior accuracy to the other techniques.
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The size of mesh proved to be effective in producing improved
accuracy. The nondimensional transverse step size AY was varied
from 0.0625 to 0.01 resulting in improvements in accuracy.

Similarly step sizes in the flow direction were effective in
improving accuracy, but to a lesser degree.

The velocity at the membrane has been interpreted in two
ways. In the first interpretation, the velocity at the membrane
surface y=0 assumes the Dirichlet notion of the average value of the
sum of limit from the left and limit from the right. This notion
interprets the velocity as half the center velocity at the edge
points of the membrane ribbon. At all other points the velocity will
be the center velocity and zero at all positions of the island. In the
second interpretation, the velocity at the membrane surface is the
limit from the left at all points. The velocity will be thereby zero
at the first station of the ribbon and full velocity at all points in the
ribbon including the last point of the ribbon, where transition to the
island occurs. The net flow is identical, and the resulits for the
solute excess mass flow are only slightly different. The first
interpretation tends to smooth the concentration at the walt and
thus to be slightly less abrupt in nature. The second probably serves
the mathematical statement more faithfully; it has been used for
the calculations herein.

RESULTS

A particular case has been evaluated to illustrate the
calculations outlined above. It has R/W=1/3, or one-third membrane.
The basic calculations have JAy/D=0.0375 and a module iength
WuJ3/-ch=0.000075. As mentioned already the ratio of WJ/2D is
1/4. For reference purposes this corresponds to a case of flux of
6x10"5my/s, a diffusion coefficient 2.4x10"1 om2/s, a shear rate of
1000s™1, and a module length (pore spacing) of 20 um. Calcutations
at 100, 200, and 1000 modules are reported, corresponding to
positions of 2mm to 2 cm from the starting point of the membrane
edge. Other reference conditions may also correspond to the same
non-dimensional variables.
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The distribution of concentration at the surface (denoted C,) of the

membrane is shown in Figure 4 for selected modules. The
concentration values generally have the expected feature of rising
from the start of the modular unit to the end of the unit. This

simply reflects the accumulation of solute by the membrane action.

A homogeneous membrane case would be expected to have a smooth
and steady increase. For the non-homogeneous membrane the
concentration declines over the islands as the solute is free to

diffuse with no countering bulk motion and rises at the membrane
ribbons. As the membrane is exposed to more and more concentrated
fluid the relative rise is seen to grow.

k4
=
o ﬂ —o0— N-=100
(&)
; —e—  N=200
o 21 ——=— N=1000
1 - T ™ T T 1
0.0 0.2 0.4 0.6 0.8 1.0
x/W

Figure 4 Distributions of Concentration at the Surface of the
Membrane

The profiles for concentration at points not on the membrane
surface corresponding to the same selected modules are shown in
Figure 5. At each module position the profiles at the end of the
membrane ribbon and at the end of the inactive island are displayed.
These profiles display the local maximum and the local minimum
for the concentration at the membrane; the difference between them
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shows the rise due to passing over one pore. Atthe more
downstream position, the concentrations are higher and, as noted for
the distributions in the preceeding paragraph, increase more in
absolute value over the membrane ribbon.

N=100,200,1000

C(y)/Cbulk

1 4
0.0 0.2 0.4 0.8 0.8 1.0 1.2

Jy/D

Figure 5 Concentration Profiles at Various Positions

The value of C,, at the most upstream position of each module
is designated C,ering: The distributions of Figure 4 and the

difference in the profiles of Figure 5 may be scaled, or normalized,
by this local value, Cqyering- By SO daing the results of Figure 6 and 7

are obtained. The normalized distribution of concentration over a
module is seen to form a universal plot. Also the profiles of
concentration at the end of island and end of the membrane ribbon
also are caused to coliapse into one plot. This observation means
that the perturbation in the concentration near one pore is only
dependent on the upstream concentration. The extent (thickness) and
relative rise of the concentration perturbation are therefore

effectively disconnected from the relative position. Suppose one

can calculate, using independent methods, the concentration
expected upstream of a pore located some distance downstream. The
details near that pore may be calculated without calculating the

first 1000 pores separately. If the thickness and shape of the
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concentration layer outside the locally affected region are the same
as for a homogeneous layer, the homogeneous layer model may be
used to provide the independent estimate of concentration.

1.2 j

-—o— N=100

- N=200

=4 4
c 11 ~—a— N=1000
=
o
-
S 1
o
(8]
—
3 1.04
(8]
0.9 e e e
0.0 0.2 0.4 0.6 0.8 1.0

x/W

Figure 6 Normalized Distributions of Concentration at the
Surface of the Membrane
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Figure 7 Normalized Concentration Profiles
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Formally the result intimated above may be expressed as
OX,Y) = C(XY) +C__(X) C' (x /WY)

Here C, is a "smooth” concentration function having a local value of
concentration at the membrane surface, C, . The C' function is the

perturbation function which has a magnitude and extent which may
vary systematically with R/W, or with the non-dimensional value of
W.

Not included in the governing equations herein are the effect
of osmotic pressure or gel deposit on the surface of the membrane.
Such calculations are possible, but involve an interactive
computation of the flow and concentration fields. Such an
interactive computation has not been entered into here. However, it
is possible to spaculate concerning a possible effect. Suppose the
concentration over a homogeneous membrane were found to have a
value midway between the ribbon and island portions of a typical
calculation such as in Figure 4. It would have a osmotic resistance
based on 1.42*Cg at N=100. The mean concentration indicated over

1437

the non-homogeneous membrane at N=100 in Figure 4 is 1.5"°Cg. The

osmotic pressure is approximately linearly related to the
concentration so the difference in the values of osmotic resistance

in the two cases is 0.08"Cg and approximately 6 percent of the
osmotic resistance value. This modification is not very severe.
However, inasmuch as some membranes may have porosities of the
order of a few percent compared with the 33% case of Figure 4, the
effect might be considerably more. The basis for the difference is
the increase in the concentration as the flux becomes more focused
over a smaller pore.

In summary the results are applicable to real three-
dimensional situations by extrapolation from the idealized
two-dimensional results shown. These results are clear and
valuable from their form as much as from their actual detail.

1. For most membrane situations the longitudinal diffusion term is
expected to be negligible, allowing solution by marching methods.
Otherwise solutions would be considerably more expensive.
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2. Criteria for the relative thickness of the converging flow pattern
relative thickness of the converging flow pattern and the diffusive
zone are shown to depend on the magnitude of WJ/2D compared to
unity. 3. The membrane has an effect on the concentration field
causing relatively rapid increases in concentration immediately

over the membrane pore, followed by relaxation of the
concentration. These details are not shown in any previous
publication even though they are easily anticipated. 4. The
distribution of concentration along a pore and its adjoining islands
is shown to conform to a single function when suitably scaled. The
scaling is proportioned according to the local concentration level.
Thus the pulse in concentration over any pore is locally scaled,
independent of other pores. This important, unanticipated result
implies that the local effects surrounding a single pore may be
analyzed without solving an entire membrane surface in the manner
needed for microscopic analysis as was done here. 5. Though not
shown, the enlarged swings in concentration may affect the

osmotic resistance and hence the estimate of productivity of a
membrane modeled including such effects.
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