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POLARIZATION ADJACENT TO AN INHOMOGENEOUS MEMBRANE 

J. L. Gaddis and S. Datta 
Department of Mechanical Engineering 
Clemson University 
Clemson, SC 29634-0921 

ABSTRACT 

The diffusion field over the surface of a membrane has been analyzed 
in a simplified manner responsive to the microporous nature of the 
actual membrane. The membrane surface is modeled as having 
intermittent strips of active sites (ribbons) separated by inactive 
sites (islands). The two-dimensional representation of the 
concentration field omits the third (transverse) direction of diffusion 
and assumes a regular and systematic surface arrangement. The 
equations of flow and concentration are shown to be reducible to a set 
of linear equations, solvable by standard methods of finite 
differencing and algebraic solution. 

The results show systematic variations of a significant magnitude 
locally around the ribbons (pores) of membrane. The magnitude, for 
example, assumes a concentration value 1.1 5 times the local 
concentration to occur from the upstream to the downstream side of a 
given ribbon for 33% surface porosity. Smaller ribbons are expected 
to produce larger jumps. The effect of the discontinuous membrane is 
isolated. That is, the rapid increases and decreases in concentration 
are in proportion to the local concentration value. 
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1422 GADDIS AND DAlTA 

JJ'JTRODUCTION 

Membranes are modern devices used to accomplish separation 
of solutes from solvents. The solute retained by an operating 
membrane becomes concentrated near the surface of the membrane 
and diffuses back into the stream. The solute concentration and 
diffusion process is frequently referred to as solute polarization. 
The polarization process has heretofore been modeled as a uniform 
process near an idealized membrane surface. But, on the scale of 
thickness of the polarization layer of about a few micrometers, the 
membrane is anything but homogeneous. Cast polymeric membranes 
have active flux sites of about 0.5 pm separated by several pm; 
formed-in-place membranes formed on steel supports have a sea of 
membrane punctuated by 1 Opm impermeable islands; and ceramic 
membranes commonly have pores of O.1pm spaced at 0.3pm intervals. 
So it is clear that the transverse flow of solvent through the 
membrane is non-homogeneous on a microscopic (but not on a 
molecular) scale. This effort aspires to study a model responsive to 
the degree of non-uniformity expected and predict the behavior as it 
depends on the surface. 

Polymeric membranes (1,2) are sometimes microporous, as in 
the case of the usual ultrafilters, and sometimes asymmetric, 
having small regions of very thin material near which the solvent 
flow will be locally higher. The effect of the asymmetric structure 
will be regarded as the same as a pore in that it produces a small 
region of high solvent flow, surrounded by a region of low or zero 
flow. Ceramic membranes (3) tend to exhibit much greater porosity 
than the polymeric membranes. In these cases of much higher pore 
densities the pores are obviously much closer together probably 
leading to a nearer approach to the homogeneous surface. The 
formed-in-place (also known as dynamic) membrane (4) is formed on 
a porous metal tube resulting in a deposited gel layer or polymer 
layer which forms a "sea" of membrane interspersed with 
impermeable "islands" of stainless steel. Thus the membrane 
surface is not directly comparable with those surfaces having a 
structure of pores in impermeable material. 

In any of the surfaces mentioned, an observer riding on a 
streamline would view, looking directly at the membrane surface 
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POLARIZATION ADJACENT TO INHOMOGENEOUS MEMBRANES 1423 

with a narrow field of view, the three-dimensional membrane 
surface as intermittent patches of active membrane and inactive 
surface with the active pores having sizes from as small as1 nm to 
as large as 1 Opm. The patches of membrane would be separated by 
distances of less than one pore dimension to distances of about 100 
pore dimensions. If the pores are regularly arranged and diffusion 
transverse to the motion of the observer is not considered, the 
result should be well represented by a two-dimensional solution 
wherein the pores are slots or ribbons. This easier two-dimensional 
problem is addressed. 

Desiring to determine the effect of the inhomogeneous nature 
of the membrane on the details of the membrane process, the 
following model has been constructed. The membrane surface is the 
boundary of a channel idealized as having a fully developed and 
uniform velocity field, having a very slight amount of flow 
withdrawn as permeate and having little pressure drop compared 
with the pressure. Under such assumptions the flux of permeate and 
the shear stress at the membrane surface can be considered 
constant. The fluid is allowed to permeate the surface in a regular 
arrangement of strips or ribbons of membrane separated by islands 
of impermeable material. The membrane ribbons are selectively 
permeable allowing almost complete retention of solute, which in 
turn returns to the fluid by diffusion. In this model the ribbons of 
membrane are aligned on the surface so as to be perpendicular to the 
crossflow direction allowing for the diffusion parallel to the ribbon 
to be neglected. Such problems are characterized by large Schmidt 
numbers and very thin layers of concentration polarization. 
However, the common assumption to neglect diffusion in the stream 
flow direction due to the thinness of the concentration layer must 
be re-examined due to the smallness of the pore spacing in the 
stream direction. For most cases it continues to be negligible, as 
will be shown. 

The domain for solution is the thin region totally 
encompassing the zone in which concentration polarization occurs, 
but much less than the entire channel. Boundary conditions are 
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1424 GADDIS AND DATTA 

asymptotic at infinity, meaning the functions approach asymptotic 
conditions and their derivatives vanish. The thickness of the 
diffusive zone and the layer containing the focusing the membrane 
flow are independently scaled. Coordinates adopted have the 
x-direction parallel to the surface and aligned with the primary 
fluid velocity, u. The y-coordinate is normal to the membrane 
surface; this is parallel to the filter flow velocity, v. The 
z-coordinate is mutually perpendicular to the others. The problem 
is formulated to avoid involvement of this third direction in the 
interest of simplicity and with the hope that essential information 
is not lost. 

typical element 
enlarged at right 
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Figure 1 Schematic Diagram of the Solution Block 
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POLARIZATION ADJACENT TO INHOMOGENEOUS MEMBRANES 1425 

Since the membrane is regularly arranged there are building 
blocks which will be referred to as modules. One module is the 
smallest representative element of the whole and comprises the 
width of one ribbon-island pair and which extends far enough from 
the membrane that the streamlines are straight and parallel. There 
is no motive for flow in the direction (z) of the edge of the ribbon 
strip, and the (x,y) cross section of one-half of one module is 
sketched in the magnified view of Figure 1. The other half is the 
mirror image of the half shown. 

In the diagram the surface A represents the surface ot an 
island and surface B is the ribbon of membrane. Surface D is 
adjoining another such block at left, while surface E represents the 
condition far enough from the membrane that the flow, (v), is 
essentially straight and parallel. The flow problem, as indicated, is 
symmetric about the line extending from the center of the ribbon 
element. The main crossflow is from left to right (x-direction) and 
the membrane flow (negative y-direction) is from top to bottom. 
The v-velocity far from the membrane surface has the value -J, the 
same as volume flow per unit of projected surface. 

With the shear field fully developed, and because the scale of 
the problem is small (maximum dimension of A+B=W/2 about 
0.05mm) and the velocities are low (v of order 
is dominated by viscous forces and all convective terms in the 
equation of motion are negligible. This observation leads to 
equations of motion: 

m/s) the flow 

o =  - - ap tp( - a2v t-) a2v . 
a Y  ax2 ay2 

The first is the equation of continuity and the second pair represent 
the equations for momentum in the directions of the cross flow and 
perpendicular to the membrane surface, respectively. The boundary 
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1426 GADDIS AND D A T A  

conditions are: 
u = 0 on A and B 
v = O o n A  
v = -J*W/R on B 
u = d p y o n  DandE 
v= -J on E 
v on D+ = v on D- (symmetry) 

The problem thusly posed is observed to be linear and is 
facilitated by using a superposition: u,v= u1 ,v1 + u2,v2. The first 
component is a pure shear flow and the second is the converging 
flow where the uniform volume flow is funneled into the individual 
pores of the surface. Each component problem will satisfy the set 
of differential equations and the boundary conditions for each 
become: 

u1 = d p  y in the entire region 
v1 = o  

u2 = 0 on the entire boundary 
v2 = symmetric with respect to centerline and D 
v2=OonA 
v2 = -J*W/R on B 
v2 = -J on E 

The solution to the second problem is facilitated by introduction of 
a stream function ,yr, such that 

u 2 = ~ / a y  and v2 = -awlax. 
With the introduction of vorticity, w = &/ax - au/ay, it is well 
known (5) that the equation of continuity will be solved exactly, and 
that two equations not having pressure explicitly will govern the 
flow. These are 
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POLARIZATION ADJACENT TO INHOMOGENEOUS MEMBRANES 1427 

The boundary conditions on these equations follow from physical 
reasoning based on the velocity relations presented already and are: 

o = 0 on the boundary except on A. At point C the vorticity, 
a, is singular, positive on the corner shown and 
negative on its image. 

y~ = 0 on D and A 
w = J*(W/2-x) on E 
w = J*W/R*(R-x) on B 
y~ = W*J on the line of symmetry over the ribbon. 

These equations were programmed for numerical solution. A 
grid was selected as 6 mesh spaces in the x-direction and 20 to 300 
divisions of essentially the same size in the y-direction. The 
vorticity equation has been solved by alternating direction implicit 
(ADI) method and the stream function equation by succcessive 
over-relaxation method (SOR). The singular condition is represented 
by a value of w at point C. The value used was adjusted to afford 
consistency with the value of J. Intuitively there is one and only one 
value of J for a given value of the strength of the circulation at 
point C. The proper value gives zero W a y  at the center of the 
outlet of the pore (midpoint of A). The physical angle of convergence 
of the streamlines is affected mildly by the selection, with more 
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Figure 2 Streamlines of the Solution 
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1428 GADDIS AND D A T A  

convergence for lower magnitudes of the value of w at C. If too large 
a values of vorticity at point C is selected, the centerline velocity 
(v-direction) overshoots, then returns to the value of J W R  At the 
same time a recirculation region appears in the corner; such a 
pattern is not expected and not valid for a flow without inertial 
terms included. Solutions with great depth in the y-direction prove 
to be identical with those of less depth; the effective region in 
which the streamlines converge is about the same as the width of 
the region. Figure 2 shows the pattern of streamlines calculated. 
There are no unanticipated features of the flow. 

It is assumed that the diffusion is in two directions only; it 
will be further assumed that the diffusion coefficient and density 
are constant. Under these assumptions the equation governing the 
concentration of solute is: 

This equation is subject to boundary conditions as follows: 

Also some condition may be required at x=L. The condition 
represented by (2c) is total exclusion of solute by the membrane. 
The start of the field (x=O) is located in the middle of the first 
island. 

sum of two solutions: 
According to previous analysis the velocities are given by the 

I u = y andv =O. ' P  1 

and 

and the normalized solutions U and V depend on the coordinates 
(x',y') and on the parameter R M I  representing the area of the 
membrane per surface area. The value of n is the number of flow 
modules upstream of the current one. 

u2 = J U(x',y') and v2 = J V(x',y'). Here x'=xMI-n and y'=yMI 
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POLARIZATION ADJACENT TO INHOMOGENEOUS MEMBRANES 1429 

The magnitude of u1 compares to up as ~ / p  to JW/R2. In most cases 
u1 is several orders of magnitude greater so that up is insignificant. 

Therefore u I u l=  ' ~ / p  and v 4 v2; v/J = V(x',y'). These terms are 
installed into the diffusion equation (1). 

Substitute into Equations (1 and 2) the variable changes: 
C=c/cB, Y=Jy/D, X=xpJ3/2D2. There results: 

2 
yac + vac = ac + &&. (3) ax J ay 72D2 ax* 

C(O,Y)= 0 
C(x,w)= 0 
ac/ay= - (w/R) c at Y=O 

The importance of the longitudinal diffusion term in Equation (3) 
depends on the value of the parameter p2J4/z2D2. Values of z/p, the 
shear rate, will typically be from 100 to 100,000 sec-l , while J 
may range from 0.05 to 1 ~ 1 0 ' ~  m/s, and D may be from 1 0-1 to 
1.5~1 0-9 m2/s. Nominal values of 'T /p =lo3, J=l 0-5, and D=l 0-1 
yield pJ2/7D=1 0-3, a small value. Whenever this parameter is very 
small, the last term in the equation is of negligible importance, 
since the value of the longitudinal derivative will at most be 
approximately the same as that for the transverse derivative. Lower 
values of D may usually be identified with lower values of J, and 
higher values of shear are used to avert low values of J, hence not 
with large J-values. It appears that most of the time the 
longitudinal diffusion term may be safely neglected. 

Based on observations of computations (6) for the 
homogeneous membrane, the thickness of the diffusive zone is 
approximately 2D/J. The corresponding thickness of the flow 
solution in the y-direction (ie the zone in which the convergence of 
the streamlines is consummated) is shown in Figure 2 to be 
approximately W. The ratios of the thicknesses of the flow and 
diffusion zones is WJ/2D. Whenever the parameter is significantly 
greater than unity the diffusive zone is declared to be W, and the 
velocity, v, forms strips having values alternating between zero and 
JW/R over the islands and ribbons, respectively. If the value of 
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1430 GADDIS AND DATTA 

WJ/2D is unity or smaller, the diffusive zone is declared to be U&. 
For the calculations herein the value of WJRD is 1/4. A complete 
book of solutions would have computations for several values of 
WJ/2D. 

The ramifications of the size of JW/2D concern the magnitude 
of the effort to obtain a solution. In the simplest (thin case) type of 
calculations, the velocity v is constant over a pore and the velocity 
field is not dependent upon the concentration field. A single 
velocity solution applies to every ribbon module and there are 
needed about 1 to 1 0-million steps each requiring the calculation of 
300 concentration points. In the most complicated case osmotic 
resistance or gel retardation is important and the velocity and 
concentration fields will depend mutually upon each other and the 
solutions will be extremely tedious. There will be 10,000 to 
100,000 blocks of 100x300 concentration points interacting 
iteratively with the flow solution. The former calculation has 
proven to be challenging to the endurance or budget of a modest 
computer (non supercomputer). The latter represents at least an 
order of magnitude more expense. 

To effect a solution, finite difference techniques have been 
used to form sets of algebraic equations from the differential 
equation. Since the longitudinal diffusion term has been eliminated 
from consideration, the procedure is of marching -solution type. The 
concentration equation (3) has been broken into finite difference 
forms using central differences in the Y-direction and 
forward-difference formulation in the X-direction. The 
maximum-guaranteed-stable step size is AX= (AY)3/2 for this 
procedure. Normally such an equation would be solved using 
implicit techniques, since the step size in the X-direction can be 
much larger than with explicit techniques. However, for this 
problem the steps must be small to account for the physical 
arrangement. In many cases the step size and maximum step size 
for stabilty of the explicit method are quite close. The explicit 
technique has been selected as the calculations may be made rapidly. 
Attempts to speed the solution are resisted because there are many 
steps. A typical physical problem has a flow module 10% in 
length, and the module is divided into perhaps 100 segments. If one 
calculates the conditions along one meter of membrane, the result 
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POLARIZATION ADJACENT TO INHOMOGENEOUS MEMBRANES 1431 

requires 10 million steps. Enough grids in the y-direction have been 
selected (typically 300) to ensure the edge of the diffusion zone 
does not exceed the range. 

Results of calculations are in the form of 

Distribution of wall concentration C(x,O)=C, 
The integral C: 

L 

C = v(x,O) c(x,O) dx 
0 

Concentration profiles C(y) at selected places, particularly at the 
ends of ribbons and islands 
The mass excess integral B: - 

WlY) I C(X,Y) - CB 1 dY 
0 

The control volume stretching from the start of the membrane to x=L 
and extending to the value of y where the diffusion ceases is 
sketched in Figure 3. The flow of solvent entering the front face at 
x=O is the same as that leaving the rear at x=L. 

Limit of concentration 

L 

1, =I u(O,Y)c,dy ; 1, =I J c p  ; 1, - fu(x,y) c(x,y)dy ; 
0 0 0 

I,= 1 v(x.0) c(x,O) s dx ; slpassage 
0 

For passage-0. I, =Il , and u(O,y)=u(x,y), giving 

I 

I I Jc,L = 1, - I , I B = U(X.Y) ( C(X,Y) - c B }  dy . 
2 

0 

Figure 3 Control Volume Illustrating the Solute Mass Flow 
Integrals 
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1432 GADDIS AND DATTA 

The solvent entering the top is the same as that leaving into the 
permeate, its amount is JJdx=JL. The difference in solute exiting 
the rear, Jucdy, and the front, hcBdy, is the mass excess integral B 
and it must equal JcBL. Two membranes are alike except in 
microdetail if they have the same transport variables and the same 
JcBL. They must have the same B-values consequently. However, 
this does not mean they have the same C-values, since the 
concentration profiles may be quite different. Yet the integrals 
represented by C are proportional to the amount of material passed 
to the permeate; the ratio of C of two membranes having equal 
B-values and other properties is a primary result. 

A few observations are in order concerning technical details 
of the numerical work and the apparent accuracy. Herein accuracy is 
judged partly by the calculated disparity between the integrals B 
and JcBL. The disparity between the values is typically reduced to 
under 15% only with considerable attention. The same measure of 
accuracy as for homogeneous membrane calculations, about 2 to 3%, 
was not possible to obtain. Errors appear significantly only at 
positions several hundred modules downstream, making the effort 
for computational experiments relatively large. The study of error 
centered on the simulation of the membrane boundary condition, the 
mesh size, and the interpretation of velocity field at the points of 
discontinuity . 

Various techniques have been used for the calculation of the 
concentration at the membrane surface,ie the wall boundary 
condition. The best boundary condition approach found assumes 
constant v-velocity to integrate the boundary condition (4c) from 0 
to AY resulting in: 

c(x,O) = C(X,AY) exp[(W/R)AY] 

In all the formulations the ratio of the membrane surface 
concentration to the Concentration of the adjacent transverse node 
is dependent on the parameters but not on the upstream 
concentration value. Use of the exponential form resulted uniformly 
in superior accuracy to the other techniques. 
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POLARIZATION ADJACENT TO INHOMOGENEOUS MEMBRANES 1433 

The size of mesh proved to be effective in producing improved 
accuracy. The nondimensional transverse step size AY was varied 
from 0.0625 to 0.01 resulting in improvements in accuracy. 
Similarly step sizes in the flow direction were effective in 
improving accuracy, but to a lesser degree. 

The velocity at the membrane has been interpreted in two 
ways. In the first interpretation, the velocity at the membrane 
surface y=O assumes the Dirichlet notion of the average value of the 
sum of limit from the left and limit from the right. This notion 
interprets the velocity as half the center velocity at the edge 
points of the membrane ribbon. At all other points the velocity will 
be the center velocity and zero at all positions of the island. In the 
second interpretation, the velocity at the membrane surface is the 
limit from the left at all points. The velocity will be thereby zero 
at the first station of the ribbon and full velocity at all points in the 
ribbon including the last point of the ribbon, where transition to the 
island occurs. The net flow is identical, and the results for the 
solute excess mass flow are only slightly different. The first 
interpretation tends to smooth the concentration at the wall and 
thus to be slightly less abrupt in nature. The second probably serves 
the mathematical statement more faithfully; it has been used for 
the calculations herein. 

RESULTS 

A particular case has been evaluated to illustrate the 
calculations outlined above. It has RMI=1/3, or one-third membrane. 
The basic calculations have JAy/D=0.0375 and a module length 
WpJ3/~D2=0.000075. As mentioned already the ratio of WJ/2D is 
1/4. For reference purposes this corresponds to a case of flux of 
6x1 O-5m/~, a diffusion coefficient 2.4~10-1 Om2/,, a shear rate of 
~ O O O S - ~ ,  and a module length (pore spacing) of 20 pm. Calculations 
at 100, 200, and 1000 modules are reported, corresponding to 
positions of 2mm to 2 cm from the starting point of the membrane 
edge. Other reference conditions may also correspond to the same 
non-dimensional variables. 
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1434 GADDIS AND DATA 

x - a 3 

n 
0 

0 2 -  
‘5 

1 

The distribution of concentration at the surface (denoted C,) of the 
membrane is shown in Figure 4 for selected modules. The 
concentration values generally have the expected feature of rising 
from the start of the modular unit to the end of the unit. This 
simply reflects the accumulation of solute by the membrane action. 
A homogeneous membrane case would be expected to have a smooth 
and steady increase. For the non-homogeneous membrane the 
concentration declines over the islands as the solute is free to 
diffuse with no countering bulk motion and rises at the membrane 
ribbons. As the membrane is exposed to more and more concentrated 
fluid the relative rise is seen to grow. 

-; - N=100 - N=200 - N-1000 

1 I 1 I 

Figure 4 Distributions of Concentration at the Surface of the 
Membrane 

The profiles for concentration at points not on the membrane 
surface corresponding to the same selected modules are shown in 
Figure 5. At each module position the profiles at the end of the 
membrane ribbon and at the end of the inactive island are displayed. 
These profiles display the local maximum and the local minimum 
for the concentration at the membrane; the difference between them 
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POLARIZATION ADJACENT TO INHOMOGENEOUS MEMBRANES 1435 

shows the rise due to passing over one pore. At the more 
downstream position, the concentrations are higher and, as noted for 
the distributions in the preceeding paragraph, increase more in 
absolute value over the membrane ribbon. 

0.0 0.2 0.4 0.6 0.8 1 .o 1.2 

Jy /D  

Figure 5 Concentration Profiles at Various Positions 

The value of C, at the most upstream position of each module 
is designated Centering. The distributions of Figure 4 and the 
difference in the profiles of Figure 5 may be scaled, or normalized, 
by this local value, Centering. By so doing the results of Figure 6 and 7 
are obtained. The normalized distribution of concentration over a 
module is seen to form a universal plot. Also the profiles of 
concentration at the end of island and end of the membrane ribbon 
also are caused to collapse into one plot. This observation means 
that the perturbation in the concentration near one pore is only 
dependent on the upstream concentration. The extent (thickness) and 
relative rise of the concentration perturbation are therefore 
effectively disconnected from the relative position. Suppose one 
can calculate, using independent methods, the concentration 
expected upstream of a pore located some distance downstream. The 
details near that pore may be calculated without calculating the 
first 1000 pores separately. If the thickness and shape of the 
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Formally the result intimated above may be expressed as 

Here C, is a "smooth" concentration function having a local value of 
concentration at the membrane surface, Cs,w The C' function is the 
perturbation function which has a magnitude and extent which may 
vary systematically with RMI, or with the non-dimensional value of 
W. 

Not included in the governing equations herein are the effect 
of osmotic pressure or gel deposit on the surface of the membrane. 
Such calculations are possible, but involve an interactive 
computation of the flow and concentration fields. Such an 
interactive computation has not been entered into here. However, it 
is possible to speculate concerning a possible effect. Suppose the 
concentration over a homogeneous membrane were found to have a 
value midway between the ribbon and island portions of a typical 
calculation such as in Figure 4. It would have a osmotic resistance 
based on 1 .42*Cs at N=lOO. The mean concentration indicated over 
the non-homogeneous membrane at N=lOO in Figure 4 is 1 .5*CB. The 
osmotic pressure is approximately linearly related to the 
concentration so the difference in the values of osmotic resistance 
in the two cases is O.08*CB and approximately 6 percent of the 
osmotic resistance value. This modification is not very severe. 
However, inasmuch as some membranes may have porosities of the 
order of a few percent compared with the 33% case of Figure 4, the 
effect might be considerably more. The basis for the difference is 
the increase in the concentration as the flux becomes more focused 
over a smaller pore. 

In summary the results are applicable to real three- 
dimensional situations by extrapolation from the idealized 
two-dimensional results shown. These results are clear and 
valuable from their form as much as from their actual detail. 
1. For most membrane situations the longitudinal diffusion term is 
expected to be negligible, allowing solution by marching methods. 
Otherwise solutions would be considerably more expensive. 
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2. Criteria for the relative thickness of the converging flow pattern 
relative thickness of the converging flow pattern and the diffusive 
zone are shown to depend on the magnitude of WJ/2D compared to 
unity. 3. The membrane has an effect on the concentration field 
causing relatively rapid increases in concentration immediately 
over the membrane pore, followed by relaxation of the 
concentration. These details are not shown in any previous 
publication even though they are easily anticipated. 4. The 
distribution of concentration along a pore and its adjoining islands 
is shown to conform to a single function when suitably scaled. The 
scaling is proportioned according to the local concentration level. 
Thus the pulse in concentration over any pore is locally scaled, 
independent of other pores. This important, unanticipated result 
implies that the local effects surrounding a single pore may be 
analyzed without solving an entire membrane surface in the manner 
needed for microscopic analysis as was done here. 5. Though not 
shown, the enlarged swings in concentration may affect the 
osmotic resistance and hence the estimate of productivity of a 
membrane modeled including such effects. 
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